def vector_size_check(*vector_variables):
return all(len(vector_variables[0]) == x
for x in [len(vector) for vector in vector_variables[1:]])
# 실행결과
print(vector_size_check([1,2,3], [2,3,4], [5,6,7])) # Expected value: True
print(vector_size_check([1, 3], [2,4], [6,7])) # Expected value: True
print(vector_size_check([1, 3, 4], [4], [6,7])) # Expected value: False
def vector_addition(*vector_variables):
if vector_size_check(*vector_variables) == False:
raise ArithmeticError
return [sum(elements) for elements in zip(*vector_variables)]
# 실행결과
print(vector_addition([1, 3], [2, 4], [6, 7])) # Expected value: [9, 14]
print(vector_addition([1, 5], [10, 4], [4, 7])) # Expected value: [15, 16]
print(vector_addition([1, 3, 4], [4], [6,7])) # Expected value: ArithmeticError
def vector_subtraction(*vector_variables):
if vector_size_check(*vector_variables) == False:
raise ArithmeticError
return [elements[0]*2 - sum(elements)
for elements in zip(*vector_variables)]
# 실행결과
print(vector_subtraction([1, 3], [2, 4])) # Expected value: [-1, -1]
print(vector_subtraction([1, 5], [10, 4], [4, 7])) # Expected value: [-13, -6]
def scalar_vector_product(alpha, vector_variable):
return [alpha * element for element in vector_variable]
# 실행결과
print (scalar_vector_product(5,[1,2,3])) # Expected value: [5, 10, 15]
print (scalar_vector_product(3,[2,2])) # Expected value: [6, 6]
print (scalar_vector_product(4,[1])) # Expected value: [4]
def matrix_size_check(*matrix_variables):
return all([len(set(len(matrix[0]) for matrix in matrix_variables)) == 1]) and all([len(matrix_variables[0]) == len(matrix) for matrix in matrix_variables])
# 실행결과
matrix_x = [[2, 2], [2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]
matrix_w = [[2, 5], [1, 1], [2, 2]]
print (matrix_size_check(matrix_x, matrix_y, matrix_z)) # Expected value: False
print (matrix_size_check(matrix_y, matrix_z)) # Expected value: True
print (matrix_size_check(matrix_x, matrix_w)) # Expected value: True
def is_matrix_equal(*matrix_variables):
# print([maxtix for matrix in zip(*matrix_variables)])
return all([ all([len(set(row)) == 1 for row in zip(*matrix)])
for matrix in zip(*matrix_variables) ])
# 실행결과
matrix_x = [[2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
print (is_matrix_equal(matrix_x, matrix_y, matrix_y, matrix_y)) # Expected value: False
print (is_matrix_equal(matrix_x, matrix_x)) # Expected value: True
def matrix_addition(*matrix_variables):
if matrix_size_check(*matrix_variables) == False:
raise ArithmeticError
return [[sum(row) for row in zip(*matrix)]
for matrix in zip(*matrix_variables)]
# 실행결과
matrix_x = [[2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]
print (matrix_addition(matrix_x, matrix_y)) # Expected value: [[4, 7], [4, 3]]
print (matrix_addition(matrix_x, matrix_y, matrix_z)) # Expected value: [[6, 11], [9, 6]]
def matrix_subtraction(*matrix_variables):
if matrix_size_check(*matrix_variables) == False:
raise ArithmeticError
return [[row[0]*2 - sum(row)
for row in zip(*matrix)]
for matrix in zip(*matrix_variables)]
# 실행결과
matrix_x = [[2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]
print (matrix_subtraction(matrix_x, matrix_y)) # Expected value: [[0, -3], [0, 1]]
print (matrix_subtraction(matrix_x, matrix_y, matrix_z)) # Expected value: [[-2, -7], [-5, -2]]
def matrix_transpose(matrix_variable):
return [ [element for element in row] for row in zip(*matrix_variable)]
# 실행결과
matrix_w = [[2, 5], [1, 1], [2, 2]]
print (matrix_transpose(matrix_w)) # [[2, 1, 2], [5, 1, 2]]
def scalar_matrix_product(alpha, matrix_variable):
return [ scalar_vector_product(alpha, row) for row in matrix_variable]
# 실행결과
matrix_x = [[2, 2], [2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]
matrix_w = [[2, 5], [1, 1], [2, 2]]
print(scalar_matrix_product(3, matrix_x)) #Expected value: [[6, 6], [6, 6], [6, 6]]
print(scalar_matrix_product(2, matrix_y)) #Expected value: [[4, 10], [4, 2]]
print(scalar_matrix_product(4, matrix_z)) #Expected value: [[8, 16], [20, 12]]
print(scalar_matrix_product(3, matrix_w)) #Expected value: [[6, 15], [3, 3], [6, 6]]
def is_product_availability_matrix(matrix_a, matrix_b):
return len([column_vector for column_vector in zip(*matrix_a)]) == len(matrix_b)
# 실행결과
matrix_x= [[2, 5], [1, 1]]
matrix_y = [[1, 1, 2], [2, 1, 1]]
matrix_z = [[2, 4], [5, 3], [1, 3]]
print(is_product_availability_matrix(matrix_y, matrix_z)) # Expected value: True
print(is_product_availability_matrix(matrix_z, matrix_x)) # Expected value: True
print(is_product_availability_matrix(matrix_z, matrix_w)) # Expected value: False //matrix_w가없습니다
print(is_product_availability_matrix(matrix_x, matrix_x)) # Expected value: True
def matrix_product(matrix_a, matrix_b):
if is_product_availability_matrix(matrix_a, matrix_b) == False:
raise ArithmeticError
return [ [sum(a*b for a,b in zip(row_a, column_b))
for column_b in zip(*matrix_b)]
for row_a in matrix_a]
# 실행결과
matrix_x= [[2, 5], [1, 1]]
matrix_y = [[1, 1, 2], [2, 1, 1]]
matrix_z = [[2, 4], [5, 3], [1, 3]]
print(matrix_product(matrix_y, matrix_z)) # Expected value: [[9, 13], [10, 14]]
print(matrix_product(matrix_z, matrix_x)) # Expected value: [[8, 14], [13, 28], [5, 8]]
print(matrix_product(matrix_x, matrix_x)) # Expected value: [[9, 15], [3, 6]]
print(matrix_product(matrix_z, matrix_w)) # Expected value: False
'데이터분석 > Python' 카테고리의 다른 글
Pandas Example 1 (0) | 2022.05.09 |
---|---|
NumPy example 1 (0) | 2022.01.14 |
defaultdict example (0) | 2022.01.14 |
deque example (0) | 2022.01.14 |
map_reduce (0) | 2022.01.14 |